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Evidence has accumulated that both murine and human adult tissues contain early-development stem cells with
a broader differentiation potential than other adult monopotent stem cells. These cells, being pluripotent or
multipotent, exist at different levels of specification and most likely represent overlapping populations of cells
that, depending on the isolation strategy, ex vivo expansion protocol, and markers employed for their identi-
fication, have been given different names. In this review, we will discuss a population of very small embryonic-
like stem cells (VSELs) in the context of other stem cells that express pluripotent/multipotent markers isolated
from adult tissues as well as review the most current, validated working criteria on how to properly identify and
isolate these very rare cells. VSELs have been successfully purified in several laboratories; however, a few have
failed to isolate them, which has raised some unnecessary controversy in the field. Therefore, in this short
review, we will address the most important reasons that some investigators have experienced problems in
isolating these very rare cells and discuss some still unresolved challenges which should be overcome before
these cells can be widely employed in the clinic.

Introduction

The name ‘‘very small embryonic-like stem cells’’
(VSELs) has been assigned to a rare population of small

cells that were initially isolated from murine bone marrow
(BM) [1–3]. Subsequently, the presence of cells that pheno-
typically correspond to VSELs has been reported in multiple
murine organs [4]. Finally, small cells that, similar to murine
VSELs, are lineage negative (lin - ), do not express CD45
antigen (CD45 - ), and display a primitive morphology (high
nuclear/cytoplasm ratio and the presence of euchromatin in
nuclei) have been reported in human (i) umbilical cord blood
(UCB) [5–8], (ii) mobilized peripheral blood (mPB) [9–13],
and (iii) gonads [14,15]. Human VSELs isolated from UCB
and mPB are highly enriched in a population of CD133 + cells
[8,16,17], and those isolated from gonads were sorted as
SSEA-4 + cells [18].

Since a VSEL-specific marker has not yet been identified,
these developmentally early cells are currently isolated by a
multiparameter sorting strategy employing a cocktail of
antibodies and proper gating [17,19–22]. Both murine and
human purified VSELs express several early-development
markers, including Oct-4, Nanog, SSEA-1 (mouse), and

SSEA-4 (human) [1,8,23] and are highly quiescent [24,25].
Despite their small size, similar morphological features, and
phenotype, VSELs are, to some degree, heterogenous. In
particular, cDNA libraries created from purified, double-
sorted VSELs (20 cells/library) revealed that these cells,
while having a characteristic morphology, small size, and
overlapping molecular signature, still differ slightly in the
expression of some genes [26]. The best method for asses-
sing the quality of sorted VSELs is the combination of
ImageStream analysis, which enables the identification of
real, nucleated cell events and excludes those from cell
debris, with 7AAD staining, which excludes cells that be-
come damaged during the sorting procedure [19,27].

The best-characterized VSELs at the molecular level
using microarray analysis are murine BM-derived VSELs
[23,26,28] and small SSEA-4 + cells corresponding to
murine VSELs isolated from human gonads [14,29,30].
Therefore, more work is needed to characterize molecular
signature of VSELs isolated from other murine organs
(eg, brain, heart, and skeletal muscles) and, in particular,
the phenotypically corresponding populations of human
VSELs in BM, UCB, and mPB. The crucial question to
ask is whether VSELs are precommitted to monopotent
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tissue committed stem cells (TCSCs) in the tissues of their
residence.

In this short editorial review, we will address the current
validated working criteria for how to properly isolate these
rare small cells. This is an important issue, because, as was
recently observed, by changing the well-established isola-
tion protocols, an incorrect population of cells was isolated
and misidentified as VSELs [31–33]. We will also discuss
the relationship of VSELs to other potential pluripotent stem
cells (PSCs) and multipotent stem cells (MPSCs), which
have been isolated from adult tissues by several other in-
vestigators. We noticed that very often cells which corre-
spond to VSELs are given different names [5,6,14,34–38].
Finally, we will also try to justify why we named these cells
‘‘embryonic-like,’’ despite the fact that they are isolated
from adult tissues.

Multiparameter Sorting of VSELs–How to Avoid
Sorting the Wrong Cell Populations

The current validated strategy for the isolation of cells
enriched for VSELs from BM, UCB, or mPB is based on
multiparameter sorting of viable small cellular events.
Murine VSELs can be isolated as small Sca-1 + Lin - CD45 -

cells, and this approach has been successfully employed not
only by us but also by other independent groups [9,39–41]
who followed our detailed sorting protocols [17,19,20,22].
As reported, the highly quiescent populations of VSELs
sorted from murine BM in appropriate experimental settings
may give rise to hematopoietic stem cells (HSCs) [42],
mesenchymal stem cells (MSCs) [40], lung alveolar type II
pneumocytes [39], cardiomyocytes [43,44], and gametes
and VSELs isolated from rat BM have been shown to give
rise to cardiomyocytes and endothelial cells [45]. Moreover,
murine VSELs may support the development of stroma in
growing tumors [46]. In parallel, human VSELs have been
already shown to become specified into HSCs [47] and
MSCs [41].

The detailed protocol on how to sort VSELs by FACS has
been described in detail in a chapter in Current Protocols in
Cytometry [19]. Unfortunately, a few other groups signifi-
cantly modified this protocol, which, instead of VSELs,
resulted in an incorrect population of sorted cells [31–33].
This has already been the subject of an extensive analysis
that we recently published [21]. However, here, we will
address some of the most important issues on how to avoid
such mistakes in the future.

The major concern with the work of some groups which
reported negative data [31–33] is that, despite their claims,
they did not follow our published protocol for isolating
VSELs. However, we have to admit that these are not trivial
sorting strategies, and failure to isolate these rare cells oc-
casionally happens even in our experience in VSELs sorting
hands.

The most critical step in VSEL sorting is proper setting of
the gate to exclude contamination by cell debris and small
erythroblasts. Enrichment in undesired objects may have a
critical impact on subsequent genetic and in vitro functional
characterization of these cells. Of great importance, despite
the presence of anti-glycophorin antibodies (anti-Ter119)
employed in the lineage cocktail to deplete murine lineage-
positive cells [19], if the wrong gating strategy is employed,

it may result in unwanted enrichment of the sorted cells for
erythroblasts [32]. In brief, one of the groups [32] failed to
isolate murine VSELs because of (i) setting up an enlarged
input gate on the FSC versus SSC plot that included gran-
ulocytes and apoptotic cells resulted in enrichment of sorted
fractions with artifacts, which were reflected in their further
analyses (eg, Annexin V binding) and excluded some of the
critical very small objects from further sorting; (ii) addi-
tional loss of very small objects by their exclusion of VSELs
by gating for ‘‘singlets’’; (iii) employing some selection
markers that are unproved as VSEL markers (eg, c-kit); and
(iv) focusing on some populations and discarding other
fractions (potentially containing VSELs) based on results
such as Annexin V binding. For instance, the entire fraction
of CD45 - /Lin - /Sca-1 + /c-kit - /KDR - cells was excluded
by these authors from further sorting [32], because it was
deemed ‘‘apoptotic,’’ while it most likely contained not only
real Annexin V + FSClow SSCdim/hi apoptotic objects, but, in
addition, VSELs. Importantly, we have reported [48] that
healthy normal cells (including VSELs and HSCs) may bind
Annexin V after lysis of RBCs due to microvesicle/micro-
particle release and posphatydylserine transfer to the
membranes of the normal cells. Thus, not all Annexin V +

objects should be interpreted as ‘‘apoptotic,’’ as these may
represent normal, functional cells [48]. Figure 1 shows a
simulation of sorting strategy employed by one of the
groups that failed to sort VSELs [32] to demonstrate how
important it is to set a proper gate during sorting of murine
BM-residing VSELs because of the possibility of contami-
nation by small CD45-negative erythroblasts.

Unfortunately, the second group [33] also did not avoid
several major technical mistakes that could result both in
VSEL loss/exclusion and dilution with extraneous objects.
The reason for this was (i) expanding the gating for VSEL
isolation to include extraneous objects (including Lindim and
CD45dim cells), resulting in VSEL dilution and enrichment
in erythroblasts and (ii) relying on inexact Syto-16 staining
as the main indicator of ‘‘VSEL candidates,’’ which, in fact,
are an incorrect, non-VSEL fraction [33]. Together, these
approaches led to both VSEL dilution and loss and had a
critical effect on the subsequent gene expression and func-
tional analysis of these cells.

In contrast to murine VSELs, phenotypically corre-
sponding human VSELs are isolated as a population of
small CD133 + Lin - CD45 - cells. We reported that expres-
sion of CD133 antigen is, so far, the most important positive
marker of human early-development VSELs [49]. However,
human VSELs may also co-express CXCR4, CD34, and
SSEA-4, the rarest population of CD133 + Lin - CD45 - cells
is highly enriched for small Oct-4 + VSELs [8]. If a sorted
population of human cells does not express CD133, it cannot
be considered to be enriched for VSELs [31]. This can be
observed in one report where [31] an FACS-sorted popu-
lation of CXCR4 + Lin - CD45 - cells that lacked expression
of CD133 was mistakenly identified as UCB-derived VSELs
[31]. Furthermore, this group not only replaced a reliable
anti-CD133 antibody clone with one that is less effective for
CD133 detection, but, in addition, ‘‘proved’’ the absence of
a CD133 + Lin - CD45 - population of VSELs in UCB by
employing histograms in their paper instead of dot plots
[31]. It is well known that since VSELs are very rare, dot
plot analysis is required to show the presence of these cells.
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Figure 2 demonstrates an example of the analysis of UCB-
derived CD133 + lin - CD45 - cells by histogram as was
performed by this group [31] versus a dot plot, as they
should be presented. Thus, based on histogram data, this
group [31] isolated an incorrect population of cells for fur-
ther analysis, and what is even more interesting, failed to
realize that, in fact, on the original histogram curves in their
paper, small ‘‘teeth’’ corresponding to rare VSELs are vis-
ible, and not displaying their data in a dot plot [31].

VSELs Express Several PSCs Markers
and Exhibit the In Vitro Criteria of PSCs
But Do Not Complete Blastocyst Development
and Do Not Grow Teratomas

Several stringent in vitro and in vivo criteria for defining
stem cells as PSCs have been proposed by embryologists
who are working with embryonic stem cells (ESCs) isolated
from embryos or induced PSCs (iPSCs), and we reviewed
these criteria in our recent publications [50,51].

In brief, recent experimental data showed that murine BM
VSELs fulfill all the in vitro criteria expected for PSCs.
Specifically, they possess the primitive morphology of early-
development cells (high nuclear/cytoplasmic ration, the
presence of euchromatin in nuclei, and a few mitochondria)
and express markers typical of PSCs (eg, Oct-4, Nanog,
and Rex-1). More importantly, we recently demonstrated
the presence of an open-type chromatin in the Oct-4 pro-
moter in murine BM VSELs. Specifically, molecular
analysis revealed its hypomethylation and association with

transcription-permissive histones (indicated by a high H3Ac/
H3K9me2 ratio) [24]. Moreover, the promoter of another
core transcription factor, Nanog, despite having a higher level
of methylation in VSELs (*50%) than the Oct-4 promoter, is
also transcriptionally active and has a high H3Ac/H3K9me2
ratio that favors transcription [24]. Based on these results, we
conclude that murine VSELs truly express both Oct-4 and
Nanog [24]. With regard to the other in vitro criteria of
pluripotency, murine VSELs also possess bivalent domains in
promoters that encode developmentally important homeobox-
containing transcription factors, such as Sox21, Nkx2.2, Dlx1,
Lbx1h, Hlxb9, Pax5, and HoxA3 [26]. Furthermore, VSELs
derived from female mice reactivate the X-chromosome [51].
Finally, we and other groups have succeeded in differen-
tiating VSELs in vitro into cells of all three germ layers
[4,36,39,40,42,52].

Nevertheless, in contrast to pluripotent ESCs and iPSCs,
murine VSELs do not complete blastocyst development and
do not grow teratomas in immunodeficient mice [24,50].
This discrepancy between in vitro and in vivo pluripotency
criteria can be explained by epigenetic changes in the ex-
pression of some paternally imprinted genes [24] that gov-
ern quiescence of these rare cells. Specifically, VSELs,
similar to primordial germ cells (PGCs), erase imprinting in
regulatory regions for paternally imprinted genes at the Igf2-
H19 and RasGRF1 loci and increase imprinting at some
regulatory regions for maternally imprinted genes such as
Igf2R and KCNQ1. Thus, murine BM VSELs, by epigenetic
modulation of imprinted genes (Igf2-H19, RasGRF1, and
IGF2R) that play an important a role in IIS, remain resistant

FIG. 1. Comparison of a correct and incorrect gating strategy for murine BM very small embryonic-like stem cells
(VSELs). (A) The correct gating strategy to analyze or sort murine BM-derived VSELs by FACS. Cells were fixed and
stained with 7AAD to show nucleated events in gate P1. Gate P2 includes small, agranular cells. Gate P3 includes Sca-1 +

Lin - cells, which are visualized on the next dot plot as CD45-negative (VSELs) and CD45-positive cells (HSCs). Ex-
panding this gate into lineagedim population will result in contamination of VSELs by erythroblasts. Percentage shows the
average content of each cellular subpopulation among total BM nucleated cells after fixation procedure and staining with
7ADD to gate for nucleated cells only. (B) An incorrect gating strategy (we followed the sorting procedure employed by
Szade et al. [32]). As shown, this group employed extended regions P2, P3, and P4, (indicated by arrows) which resulted in
enrichment of erythroblasts. (C) Expression of erythroblastic markers: CD71 and Ter-119 (markers of early-stage and more
differentiated erythroblasts) in cells sorted by employing correct (A) and incorrect (B) sorting strategies. Cells enclosed by
circles in the lower dot plot indicate an erythroblast population that contaminates the VSELs, which is not observed in cells
sorted by the correct strategy (upper dot plot).
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to stimulation by insulin, IGF-1, and IGF-2 and to additional
modulation of expression of the KCNQ1 locus, which reg-
ulates expression of the cell cycle inhibitor p57Kip2. As a
result of this resistance, VSELs remain in adult tissues as a
population of highly quiescent cells [24], and, therefore,
these epigenetic changes explain their lack of ex vivo
expansion.

Considering the in vivo criteria of stem cell plur-
ipotentiality, one has to consider that while all these in vivo
criteria apply very well to ESCs and iPSCs [53,54], they are
not always applicable for other pluripotent stem cells such
as epiblast stem cells (EpiSCs) [55–58] or PGCs [59–61]. In
particular, PGCs, by changes in expression of imprinted
genes, remain quiescent, do not proliferate, do not com-
plement blastocyst development, and do not form teratomas
[62–65]. However, they may be converted by appropriate
manipulation to embryonic germ cells (EGCs), but this re-
quires appropriate changes in the expression of the im-
printed genes mentioned earlier [24,66]. This well-known
fact has also important practical implications. As previously
reported, since murine BM VSELs express several markers
of migrating PGCs and undergo similar (but not identical)
epigenetic changes as PGCs in the expression of imprinted
genes [24], it might be possible by manipulating the ex-
pression of imprinted genes to reprogram them to a prolif-
eration-permissive state and expand them ex vivo for
therapeutic purposes. This is one of the current challenges in
our laboratory.

In Table 1, we have summarized the most important
characteristics of murine and human VSELs.

Why ‘‘Small Embryonic-Like’’ Stem Cells?

The name ‘‘embryonic’’ has been proposed historically,
based initially on the morphology of these cells and trans-
mission electron microscope images that revealed a similar
chromatin structure as the chromatin in ESCs [3,67]. Fur-
thermore, molecular analysis of gene expression performed
later revealed that VSELs express not only Oct-4, Nanog,
and Rex-1 but, in addition, also several markers character-
istic of EpiSCs and epiblast-derived migratory PGCs
[23,28]. We are aware that the name ‘‘embryonic-like’’ may
create some confusion, in particular, when size and mor-
phology of VSELs are compared with that of established
immortalized ESC lines. However, one should take into
consideration that stem cells in the preimplantation blasto-
cyst or epiblast are very small and, in addition, we have to
consider that quiescent cells residing in adult tissues have
reduced cytoplasm and a high nuclear/cytoplasmic ratio.

In fact, several investigators have described populations
of very small stem cells in adult murine [15,34–37,45,68],
and most likely, some of these cell populations that possess
broader differentiation potential across germ layers could be
related to the VSELs (Table 2).

The Biological Function of VSELs in BM
and Other Adult Tissues

We and others postulate that in BM, VSELs are a dormant
population of stem cells which serve as precursors for long-
term repopulating HSCs (LT-HSCs) [50,69,70] and MSCs

FIG. 2. FACS analysis of umbilical cord blood (UCB) CD133 + Lin - CD45 - VSELs. UCB VSELs are very rare cells,
and their content varies, sometimes significantly, between UCB units. Upper panel–P1–shows DNA positive events
shown in P2 as SSC versus FSC dot plot. P3–includes Lin - CD45 - cells. These human UCB Lin - CD45 - cells were
subsequently evaluated by FACS for the expression of CD133 antigen. The lower left panel illustrates an analysis for the
presence of CD133 + cells in cells from P1/P2/P3 by employing a histogram, and the right panel is a visualization of these
rare cells by dot plot. Danova-Alt et al. [31], in their recent studies, concluded that CD133 + CD45 - Lin - cells as well as
CD34 + CD45 - Lin - cells do not exist in UCB. In fact, one of the reasons that these rare stem cell populations were
overlooked by Danova-Alt and colleagues is they employed histograms instead of dot plot cytograms [31].
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[40,41]. By contrast, VSELs residing in the gonads give rise to
gametes [15,68,71]. However, more studies are required to see
whether VSELs in other organs play a similar role as precursors
for monopotent TCSCs. Evidence has accumulated that VSELs
are activated and mobilized into PB during tissue or organ
injuries in murine and human models of heart infarct
[10,44,72], stroke [11], skin burns [13], colitis ulcerosa [12],
and tumor expansion [46] and in several of these pathologic
situations, the number of VSELs circulating in peripheral blood
may be of some prognostic value.

Table 1. The Most Important Identification Criteria

That Are Attributable to BM-Purified Murine

VSELs and Human UCB-Isolated VSELs

Source
of VSELs Characteristics

Murine
VSELsa

Enriched in population of cells that are slightly
smaller than red blood cells.

Primitive morphology, large nuclei contain
euchromatin, high nuclear/cytoplasmic ratio.

Quiescent cells due to epigenetic changes in
expression of some genes regulated by
paternal imprinting (eg, Igf2-H19, RasGrf1,
IGF2R, and p57Kip2). It also explains that
they neither form teratomas nor complement
blastocyst development.

Purified VSELs are enriched for cells that
express some markers characteristic for
pluripotent stem cells (Oct-4, Nanog,
SSEA-1, and presence of bivalent domains),
epiblast and germ line cell markers.

Number of VSELs decreases with the age and
correlates with life span in experimental
animals.

In appropriate experimental models murine
VSELs differentiate into cells from all three
germ layers, including germ line.

Highly resistant to stress, irradiation and
cytostatics.

Human
VSELsb

Enriched in a population of cells that are
slightly smaller than red blood cells.

Primitive morphology, large nuclei contain
euchromatin, high nuclear/cytoplasmic ratio.

Purified human UCB-VSELs are enriched for
cells that express some markers
characteristic for pluripotent stem cells (eg,
Oct-4, Nanog, and SSEA-4) and some
epiblast and primordial germ cell markers.

Do not form teratomas in experimental animals
Quiescent cells due to epigenetic changes in

expression of some genes regulated by
paternal imprinting (eg, Igf2-H19).

In appropriate experimental models, human
VSELs differentiate into hematopoietic cells,
mesenchymal stem cells, and neural cells.
Moreover, VSELs isolated from human
gonads also differentiate into germ line cells.

aThe best characterized so far at molecular level are murine
VSELs purified from BM. More work is needed to compare VSELs
isolated from other tissues with BM-purified ones.

bRecent data reported on VSELs-like cells isolated from human
ovaries indicate their molecular similarity to murine BM-purified
VSELs [14,15,18,68,117,118].

VSEL, very small embryonic-like stem cells; UCB, umbilical
cord blood; BM, bone marrow.

Table 2. Examples of Selected Reports

from Other Independent Groups on Small

Stem Cells That Are Attributable to VSELs

Cells name as originally described
in the literature References

ELH cells—Very small cells *5mm in
diameter isolated by elutriation and
FACS sorting or by elutriation (E),
lineage depletion (L), and recovered
after homing (H) to BM. Give rise to
long-term reconstituting hematopoietic
cells (LT-HSCs) and epithelial cells.

[34,35,119]

Small nonhematopoietic Sca-1 +

Lin - CD45 - cells—Isolated by FACS
from murine BM give rise to type II
pneumocytes, producing surfactant in
lung alveolar epithelium. Recently,
these cells have been confirmed to be
VSELs.

[39,52]

Pluripotent CD45-Sca-1 + c-kit- cells—
Isolated by FACS from murine BM,
muscles, and intestinal epithelium that
are able to differentiate into cells from
all three germ layers.

[36]

Spore-like stem-cells—Very small cells,
*5 mm in diameter, isolated from
various murine tissues, resistant to
freeze/thawing, expressing Oct-4, and
showing broad differentiation. The
isolation procedure of these small
cells not revealed in original paper.

[37]

Rat embryonic-like stem cells (ELSCs)—
Very small cells, *5mm in diameter,
isolated by FACS from rat bone
marrow as SSEA-1 + Lin- CD45-

population. These cells as reported
express Oct-4 and are endowed with
in vitro and in vivo cardiomyogenic
and endothelial potential.

[45]

Ovarian and testicular VSELs—Small
Oct-4 + SSEA + cells isolated by
FACS from ovarian surface
epithelium (OSE) from mice
(SSEA-1 + ) and humans (SSEA-4 + )–
precursors of female gametes. Human
OSE-derived VSELs were
characterized extensively by gene
array for mRNA expression. Small
Oct-4 + SSEA + cells were also
identified in murine and human testes
as precursors of male gametes.

[14,15,18,68,117]

Embryonic-like stem-cells from UCB—
Small CD45 - , CD33 - , CD7 - ,
CD235a - pluripotent stem-cells
(*3 mm in diameter) co-expressing
embryonic stem-cell markers,
including Oct-4 and Sox2, and able to
differentiate into neuronal cells.

[5,6]

Human UCB-derived VSELs—Small
Oct-4 + , SSEA-4 + , Nanog + , Sox2 + ,
Rex-1 + , and Tert + cells.

[7,20]

(continued)
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The number of VSELs in adult murine tissues reportedly
decreases with age [73–75], and the number of these cells also
correlates with lifespan in mice. Mice that live longer (eg,
Laron and Ames dwarfs) maintain higher numbers of these
cells in BM [73]. Preliminary not published data also indicate
a positive effect of physical activity and calorie restriction in
maintaining a high number of VSELs in adult murine tissues.

Based on this evidence, VSELs could be a back-up popu-
lation of dormant stem cells in adult tissues that plays, on the
one hand, an important role in organ regeneration during tissue
injuries, and on the other hand, is involved in rejuvenation of
the tissues. Since the number of these cells decreases with the
age [73–75], this could help explain both the impaired regen-
eration and tissue rejuvenation observed in older individuals.

What Is the Rationale for Why PSCs/MPSCs
Reside in Adult Tissues?

A decade ago, the concept of stem cell plasticity was
proposed, based on the assumption that adult monopotent
TCSCs (eg, HSCs) may trans-dedifferentiate into cells
from other germ layers (eg, neural cells) [76–80]. This
concept is currently rejected by a majority of the scientific
community, and alternative explanations for the ‘‘phe-
nomenon of stem cell plasticity’’ have been proposed, such
as cell fusion [81–83] or the presence of heterogeneous
populations of stem cells, for example, in BM, UCB, or
mPB, including some rare stem cells endowed with broader
differentiation potential [1,5,6,36,47,84,85]. Moreover, in
parallel, cumulative evidence from several laboratories
shows that in the adult tissues may reside cells which ex-
press some early development embryonic markers
[5,6,30,86–95], and some of these cells may even possess
germ line potential [96–103]. Some of these intriguing
cells are listed in Table 3. It is important to emphasize that
murine BM-purified VSELs are enriched as mentioned
earlier in cells which express several markers characteristic
for migrating PGCs [23].

In support of the presence of early development stem cells
in postnatal life, several types of putative PSCs or MPSCs
have been described and isolated, primarily from hemato-
poietic tissues and that are able to give rise to cells from

more than one germ layer [36,87,104–109]. These cells were
isolated by employing various strategies, such as ex vivo
expansion of partially purified immunomagnetic- or FACS-
based sorted cells [35,36,39,45,87,104,107,108]. Never-
theless, in most of the expansion cultures, those rare cells that
were able to initiate expansions and cross germ-layer com-
mitment were not characterized at the single-cell level
[78,87,105,106,108], and in most of these cases, the pheno-
type of the putative stem cell with PSC/MPSC properties was
described ‘‘post factum,’’ after phenotyping clones of already
differentiated, in vitro-expanded cells [87,104,108,110].
Nevertheless, many of the investigators would agree that if
early-development stem cells endowed with broader differ-
entiation potential reside in adult tissues, they are probably
closely related and exist at different levels of tissue specifi-
cation. Most likely, they represent overlapping populations of
early-development stem cells that, depending on isolation
strategy, ex vivo expansion protocol, and markers employed
for their identification, have been given different names
[87,104,105,107,108,110–112]. Figure 3 shows a hypotheti-
cal relationship to other populations of multi/pluripotent
stem cells described in adult BM, PB, and UCB such as,
for example, Multipotent Adult Stem Cells (MASC) [104],
Multilineage-differentiating stress-enduring cells (Muse)
[110,111], MSCs [112], Multipotent Adult Progenitor Cells
[106], Unrestricted Somatic Stem Cells [107], Marrow-

Table 2. (Continued)

Cells name as originally described
in the literature References

Human PB-derived VSELs—Oct-4 +

very small cells isolated by FACS. In
one of the reports SSEA-4 + CD133 +

CXCR4 + Lin - and CD45 - VSELs
from human PB formed in
immunodeficient mice vascularized
bone fragments.

[9,41]

Omnicytes—Small Oct-4 + stem-cells
identified in UCB, able to establish
fetal-maternal chimerism.

[38]

UCB-derived nonhematopoietic CD34 -

Oct-3/4 + , Sox2 + , Rex-1 + cells—that
are able to differentiate into neural
lineage (neurons, astrocytes,
oligodendrocytes).

[120]

Table 3. Selected Reports from Other Groups

on Stem Cells in Adult Nongonadal Tissues

That Possess Germ Line Potential and/or

Express Embryonic Stem Cell Markers

(eg, Oct-4, SSEA, and MvH)

Cells name as originally described in the
literature

References

Stem cells with germ line potential from
newborn mouse skin—Oct-4 + cells isolated
by FACS from Oct-4-GFP mice that are able
to give rise in vitro and in vivo to early
oocytes.

[96]

Porcine multipotent stem/stromal cells—
Oct-3/4 + , Nanog + , Sox2 + cells isolated
from porcine skin and adipose tissue able to
differentiate into oocyte like cells.

[97]

SSEA-1 + murine BM cells—Isolated from
murine BM by anti-SSEA-1
immunomagnetic beads. In the presence of
BMP4 (bone morphogenic factor-4), they
differentiate into Oct-4 + Stella + Mvh + and
into gamete precursors.

[98]

BM-derived putative germ cells—
Oct-4 + Mvh + Dazl + Stella + cells present in
BM that may affect recurrence of oogenesis
in mice sterilized by chemotherapy.

[99,100]

BM-derived male germ cells—Oct-4 + , Mvh + ,
Stella + cells isolated as Stra8-GFP cells
from BM from Stra8-GFP transgenic mice.
These cells express several molecular
markers of spermatogonial stem cells and
spermatogonia.

[101]

BM-derived precursors of male germ cells—
GFP + transgenic chicken Oct-4 +

SSEA-1/3/4 + BM cells after injection into
testes give rise to functional sperm.

[102]
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Isolated Adult Multilineage-Inducible Cells [108], and Mul-
tipotent Progenitor Cells [87,104].

Overall, the presence of PSCs/MPSCs in adult tissues can
be explained by the possibility that early, during embryo-
genesis, not all of the earliest-development stem cells dis-
appear from the embryo after giving rise to TCSCs, but
some may survive in developing organs as ‘‘a dormant back-
up population of more primitive stem cells’’ [113]. These
cells could give rise to monopotent TCSCs and, thus, be
involved in tissue/organ rejuvenation and in organ regen-
eration after organ injury. In support of this notion, evidence
has accumulated that adult murine tissues, in fact, contain,
in addition to rapidly proliferating stem cells, a back-up
population of more primitive dormant stem cells [3,4]. We
have proposed as mentioned earlier that these most-
primitive dormant stem cells are kept quiescent in adult tis-
sues by changes in the expression of imprinted genes which
mostly regulate insulin/insulin like growth factor-1 and -2
signaling (IIS) [24,66]. Interestingly, our proposal that the
most-primitive stem cells in adult tissues which give rise to
BM LT-HSCs [42,47] follow this mechanism has been re-
cently somehow confirmed by another group [114]. Thus, we
envision that VSELs, or stem cells very closely related to
them, could fulfill the criteria for such dormant stem cells in
adult tissues [113]. This, however, requires further experi-
mental evidence, in particular for the most-primitive stem
cells residing in other extra-hematopoietic tissues.

Future Directions

Despite significant progress in the field, there are still
many problems with VSELs that should be solved. First,
most of the data has been generated so far in murine

BM-derived VSELs. We do not know whether phenotypically
similar VSELs residing in other murine organs are regulated
in the same way. Second, we are aware that we may be puri-
fying a collection of small cells which are at different levels of
tissue specification and development. Third, we also do not
know whether human VSELs have a same molecular signa-
ture as their murine counterparts. Finally, as mentioned ear-
lier, expansion in vitro is still a problem for both murine and
human VSELs. We believe that the most important reason for
these obvious obstacles is epigenetic modification of some
imprinted genes in these cells [24] and unfortunately, our in
vitro models which we applied so far did not provide optimal
signals and microenvironment to reverse this phenomenon.
Therefore, we need to explore the possibility that modification
of imprinted genes in VSELs, as reported for PGCs [62–64],
could help expand these cells. Another strategy would be to
find a proper scaffold or supportive microenvironment that
will force expansion and differentiation of VSELs, similarly
as has been recently reported for other types of stem cells
[115,116].

We expect that the next few years will bring answers
about the developmental origin and biological role of this
distinct and intriguing population of stem cells residing in
adult tissues. We should also seriously consider a new hi-
erarchy for the stem cell compartment not only in adult BM
but also in other tissues and try to investigate the mutual
relationship between VSELs and PSCs and MPSCs de-
scribed by different investigators in adult organs
[5,15,35,36,41,85,88,109].

Finally, we ask the scientific community to follow our
well-described isolation protocols [19] and directly contact
our group if there are problems with gating and sorting of
these very rare cells. This will avoid confusion in the field

FIG. 3. Hypothetical relation of VSELs to other multi/pluripotent stem cells identified in adult bone marrow (BM),
peripheral blood (PB), and UCB. (A) VSELs and other multi/pluripotent stem cells identified in hematopoietic tissues are
independent populations of stem cells. (B) VSELs are the most primitive small dormant stem cells that on proper activation
give rise to expanding other larger multi/pluripotent stem cells. (C) VSELs are the most primitive small dormant stem cells
that on proper activation give rise to other larger multi/pluripotent overlapping stem cell populations. We hypothesize that it
is the most likely scenario.
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and situations in which cells are identified as VSELs but
lack a true VSEL phenotype [31–33]. While this paper was
prepared for print two recent reports confirmed presence
of VSELs in adult human and murine tissues [121, 122].
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